
1

A Robust and Generalized Framework for
Adversarial Graph Embedding

Jianxin Li, Xingcheng Fu, Shijie Zhu, Hao Peng, Senzhang Wang, Qingyun Sun,
Philip S. Yu, Fellow, IEEE, and Lifang He

Abstract—Graph embedding is essential for graph mining tasks. With the prevalence of graph data in real-world applications, many
methods have been proposed in recent years to learn high-quality graph embedding for various types of graphs, among which the
Generative Adversarial Networks (GAN) based methods attract increasing attention among researchers. However, most GAN-based
generator-discriminator frameworks randomly generate the negative samples from the original graph distributions to enhance the
training process of the discriminator without considering the noise. In addition, most of these methods only focus on the explicit graph
structures and cannot fully capture complex semantics of edges such as various relationships or asymmetry. In order to address these
issues, we propose a robust and generalized framework named AGE. It generates fake neighbors as the enhanced negative samples
from the implicit distribution, and enables the discriminator and generator to jointly learn robust and generalized node representations.
Based on this framework, we propose three models to handle three types of graph data and derive the corresponding optimization
algorithms, namely the UG-AGE and DG-AGE for undirected and directed homogeneous graphs, respectively, and the HIN-AGE for
heterogeneous information networks. Extensive experiments show that our methods consistently and significantly outperform existing
state-of-the-art methods across multiple graph mining tasks.

Index Terms—Graph representation learning, generative adversarial networks, directed graph, heterogeneous information networks.

✦

1 INTRODUCTION

G RAPH representation learning aims to learn a low-
dimensional vector of each node in a graph, and

has gained increasing research attention recently due to
its broad mining tasks, such as link prediction [1], graph
reconstruction [2], and node classification [3]. Recently,
many graph representation learning methods have been
proposed for various types of graphs. These methods can
be roughly divided into three types including matrix fac-
torization based methods [4], [5], [6], random walk based
methods [7], [8], [9], [10], and deep learning based meth-
ods [11], [12], [13], [14]. Most of these methods rely on
strict proximity measures [15] and low rank assumption of
the graph adjacent matrix. They focus on representing both
structures and features information of the graph. However,
for different tasks, it is necessary to model data as graphs
with semantic information in real-world scenarios. These
latent semantic information may perturb the representation
learning of graph structure, and thus lead to the over-fitting
problem in the learning process. Moreover, most of these
methods perform negative sampling from the original graph
to speed up and ensure the effect of training. These nega-
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tive samples are limited to the existing samples of graph,
and they are unable to make good use of graph semantic
information. Many generative adversarial networks (GAN)
based methods [16], [17], [18] have been proposed to solve
the above problem by adversarial training regularization.
Although these methods can learn robust node representa-
tions, their generators focus on learning the discrete node
connection distribution in the original graph. The lack of
consideration of invisible semantic information leads to the
lower generalization ability of these models.

Meanwhile, many graphs in the real-world contain com-
plex semantics (e.g., social networks, citation networks and
web-page networks). For graphs with semantics, we argue
that existing works have two major limitations on im-
proving the robustness of model and preserving semantic
information at the same time. First, for the structure of
graphs with semantic information such as asymmetry, ex-
isting methods focus on preserving the structure proxim-
ity [15], [19] but ignore the underlying semantic information
of the nodes. For the nodes with only out-degree or in-
degree edges, their target or source embeddings cannot
be effectively trained. Fig. 1a presents a toy example of a
directed graph. For predicting the link between nodes A
and C in Fig. 1a, A and C are the nodes with only out-
degree edges and AC is a potential link. Since the node
pair (A,C) is regarded as negative samples, it is hard
for existing methods to predict the link AC . As shown in
Fig. 1a, the nodes with zero out-degree or in-degrees (e.g.,
A and B) account for a large proportion of the graph. It
means that these nodes with asymmetric semantic infor-
mation are ubiquitous in some real-world graphs. Second,
for the graph with various attributes or types, such as
heterogeneous information networks, existing GAN-based
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(a) Directed graph. (b) Heterogeneous information networks.

Fig. 1. (a) An example of asymmetric semantics (directed graph). The two pie charts are statistics from the social network of Twitter and the
citation network of CiteSeer, respectively. (b) An example of heterogeneous semantics (heterogeneous information networks). On the left sub-
figure, different colored lines represent different types of relationships. On the sub-figure, the differences of each node in multiple relationships
embedding spaces and unified embedding spaces.

methods cannot directly and explicitly model the semantic
information of different relationships. Mapping different
types of nodes into a unified low-dimensional space may
lead to significant information loss. The lack of explicit
representation of the graph complex semantics may cause
many problems, such as embedding distortion and semantic
ambiguity [20]. Fig. 1b shows an example of a film network,
where the user u1 has relations with both the musical(genre)
gm and the director ds. An assumption is that the director
ds is not good at the genre gm, and he has only made
two films of this genre. In other words, gm and ds have
a low correlation, and it is not completely contained in the
network, i.e., ”invisible information”. If all nodes are em-
bedded into a unified low-dimensional space, u1 can only
be embedded in the middle of gm and ds, and make u1 not
similar to gm and ds anymore. In summary, the above toy
examples show that different semantic information of the
graph has various impacts on the representational learning
of the graph structures and types. Therefore, learning good
representations for graphs with complex semantics becomes
extremely challenging.

To address the above challenges, we propose a novel
robust and generalized framework for Adversarial Graph
Embedding (AGE). Specifically, a generator generates fake
neighborhoods for each node from a learnable implicit
continuous distribution of node representations. Competi-
tion between the generator and discriminator drives both
of them to improve their capability until the generated
distribution is indistinguishable from the true connectiv-
ity distribution. Unlike existing GAN-based methods that
sample from the original graph, our method generates fake
neighbors as negative samples directly from the implicit dis-
tribution of each node. Generating fake neighbors directly
from a continuous distribution makes our framework more
flexible and scalable because it is not sensitive to different
graph structures. Our method can efficiently preserve the se-
mantic information. The source code of this work is publicly
available at https://github.com/RingBDStack/AGE.

A preliminary version appeared in the proceedings of
AAAI 2021 [21], which focuses on adversarial network
embedding for directed graphs and only considered the
asymmetric (directional) semantics information on graph
structure. This journal version has extended it into more

various semantics such as edge types or relationship at-
tributes of the graph, and finally integrate a robust and
generalized framework named AGE. The core idea is to
learn more robust and generalized graph representations
by fusing the implicit semantic distribution and designing
model according to semantic rules. In practice, we im-
plement corresponding variant models based on AGE for
the three typical graphs representation learning: undirected
graphs, directed graphs, and heterogeneous graphs. (1) For
undirected graphs, we propose a more robust and efficient
method named UG-AGE. The generator samples noise from
the implicit Gaussian distribution of each node, and directly
generates fake neighbors as negative samples for adversar-
ial training. (2) For directed graphs, the challenge is that
asymmetric semantic causes the difficulty of learning repre-
sentations of nodes with zero out-degrees or in-degrees. To
preserve asymmetric semantic, we propose an asymmetric-
aware model named DG-AGE, which has two generators for
generating fake source neighbors and fake target neighbors,
respectively. (3) For heterogeneous information networks,
the challenge is how to learn the node representation with
different relationship semantics. To preserve heterogeneity
semantics, we propose a relationship-aware model named
HIN-AGE, which can be combined with the translate mod-
els [22], [23], [24] and the heterogeneous graph neural
networks (HGNNs) [25] with simple modifications to learn
the various relationship semantics. Extensive experimental
results on real-world graph datasets show that the proposed
models consistently and significantly outperform various
unsupervised state-of-the-art methods on the tasks of link
prediction, node classification and graph reconstruction.

We highlight the advantages of AGE as follows:
• Robustness and Generality. AGE generates adversar-

ial samples from the implicit distribution calculated by the
latent node representations. It can be generalized to non-
existent nodes and not restricted to the original graph.

• Semantic-preserving. AGE can modify the implicit
distribution according to different graph semantics, which
can effectively preserve the complex semantics of the graph.

• Scalability. Since the implicit node distribution is
continuous, AGE can be generalized to large-scale graphs.

• Flexibility. Many other graph embedding methods and
external knowledge can be plugged into AGE.
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The rest of the paper is organized as follows. We in-
troduce the overall framework in Section 2 and propose
three variant models for different graphs in Section 3. The
experimental results and analysis are presented in Section 4.
We review related work in Section 5. Finally, conclusion and
future work are given in Section 6.

2 OVERALL FRAMEWORK OF AGE
The proposed framework AGE mainly consists of two com-
ponents: generator and discriminator, which jointly learn
the robust and generalized node representations. Specifi-
cally, the generator learns a semantic-aware sampling dis-
tribution for each node and generates negative samples
based on semantic rules, which might result in higher-
quality negative samples than those obtained directly from
the original data. The discriminator learns to distinguish
negative samples from the positive ones. The overall process
is described by pseudo-code in Algorithm 1 and Fig. 3
present the workflow of Algorithm 1 on three models we
proposed in Chapter 3.

2.1 The Implicit Distribution of Graph
The implicit distribution of the graph contains the prior
semantic information of the graph and sampling from it
can enhance the quality of negative samples, improving the
robustness and generalizability of the model. We use node
implicit representations and other auxiliary information to
construct alternative noise distributions for different net-
works in order to learn as much generic and potential graph
information as feasible. In general, for a graph G(V, E),
we obtain the implicit node representation by any graph
embedding encoder. The implicit node distribution based
on d-dimensional Gaussian distribution N(µ, σ2I) can be
calculated by node representations as:

η ∼ N
(
Z, σ2I

)
, (1)

where η is generated noise vector, Z is the d-dimensional
implicit node representations, and σ2I ∈ Rd×d is a covari-
ance variable that can be learned. The noise distribution
used in our adversarial mechanism is selected based on the
implicit feature representation of the graph, which improves
the robustness and generalizability of the graph embedding.

2.2 Generator
To use semantic information as much as possible, the gener-
ation of fake negative samples needs to conform to semantic
rules. Here we propose the basic and semantic-preserved
generators for learning graphs with various types.
Basic generator structure. The generator with the implicit
node distribution is defined as:

G
(
·; θG

)
= f

(
η; θf

)
, (2)

where θG is the parameters for generator G, and the input
of G

(
·; θG

)
can be the node representations and semantic

information of the graph. θf is the parameters of the trans-
form function f . The generator samples the noise from the
implicit node distribution η ∼ N

(
zTu , σ

2I
)

according to
Eq. 1, where zu ∈ Rd×1 is the embedding vector of node
u. The parameter of generator G is θG =

{
η : G, θf

}
.

Given a node u, the generator outputs the embedding
eu′ ∼ G

(
u : G, θG

)
of the fake neighbor node u′. In this way,

we obtain a negative node pair (u, u′). For an undirected
graph, the implementation of a basic generator is shown
in Fig. 2a. First, we get the one-hot encoding of the input
node u and then input it to an embedding layer for a dense
vector representation. Note that one-hot encoding can be
replaced with other embedding models as required. At the
same time, the generator randomly samples a noise vector
from a Gaussian distribution. The dense vector and the noise
vector are added as the vector z as the input of f(·). f(·)
outputs the embedding eu′ of the generated fake node.
Semantics preserved generator. For graphs with complex
semantics, we need to make full use of their semantic
information. Therefore, we need to preserve the semantic
of the graph in the generated samples, consistent with the
sampling of the positive samples. We design a distribution
that fuses semantics and implicit node representations as the
noise distribution of the generator. The generator samples
random noise from this semantic preserved implicit node
distribution and generates fake neighbor nodes for adver-
sarial training. For two typical graph semantic informa-
tion, asymmetry and heterogeneity, we give the semantic-
preserved implicit node distribution respectively as follows:

• Asymmetry. To preserve the asymmetric proximity,
each node u of a directed graph G needs to possess two
different representations based on two roles (i.e., the source
role and target role), represented by su ∈ Rd×1 and
tu ∈ Rd×1, respectively, which need to be obtained by joint
learning. For this scenario that is difficult to model asymme-
try semantics directly such as directed graphs (DG), we use
two generators to learn the source and target representations
of the nodes, respectively. As shown in Fig. 2b, the source
generator Gs and target generator Gt share an implicit node
distribution:

Gs
(
u; θG

s
)
= fs

(
η; θf

s
)
, Gt

(
u; θG

t
)
= f t

(
η; θf

t
)
,

(3)
where η is sampled from the same implicit node distribu-
tion. By jointly learning, two generators can both capture
the source and target semantic information of each node.

• Heterogeneity. For scenarios that can explicitly model
heterogeneous semantics (e.g., heterogeneous information
network [26], knowledge graph [27]), we first fuse the
node implicit representations and heterogeneous semantic
representations as shown in Fig. 2c. Then the noise distri-
bution of the generator can be obtained based on the fused
distribution. Formally, the definition of semantics preserved
implicit node distribution can be derived from Eq. (2) as:

p (η|s) = N
(
zS(eu,er), σ

2I
)
, (4)

where eu and er are the node representation of node u and
semantics representation of relation r, respectively, and S(·)
is a function that fuses the node and semantics represen-
tations. The generator samples noise from this distribution
and generates fake nodes as negative samples.

To sum up, as the generator is designed with full con-
sideration of the semantics of a graph and uses continuous
implicit distribution to generate fake samples directly, our
framework is more adaptive, scalable and computationally
efficient for different graphs.
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(a) Basic generator (b) Asymmetry preserved generator (c) Heterogeneity preserved generator

Fig. 2. Illustration of the generator of the proposed framework. (a) The basic generator calculates the implicit node distribution and generates the
fake neighbors for each node. (b) The Asymmetry preserved generators represent source and target properties of nodes with a shared implicit node
distribution for graphs with asymmetry semantic. (c) The Heterogeneity preserved generator fuses representations of nodes and relationships to
obtain the implicit node distribution.

Algorithm 1: The process of overall framework.
Input: Graph G, the number of maximum training

epochs nepoch, the numbers of generator and
discriminator training iterations per epoch nG,
nD , the number of samples ns.

Output: θG, θD .
1 Initialize θG and θD ;
2 for epoch = 0; epoch < nepoch do
3 for n = 0;n < nD do

// For each node
4 for u ∈ V do
5 η ← Eq. (1) ; // Fake neighbor
6 θD ← Eq. (10) ; // Update

discriminator
7 end
8 end
9 for n = 0;n < nG do

// For each node
10 for u ∈ V do
11 η ← Eq. (1) ; // Fake neighbor
12 θG ← Eq. (7) ; // Update generator
13 end
14 end
15 end

2.3 Discriminator

The discriminator aims to distinguish strongly connected
node pairs from weak ones and calculate the possibility that
an edge exists between nodes. For any node pair (u, v), we
sample the connected node pairs as the positive samples
according to adjacency matrix A, and connect the generated
fake node u′ and the original node u as the negative sam-
ples. Then the discriminant function outputs a number from
0 to 1 indicating the probability that node pair is true. In this
paper, we use the sigmoid function as the discriminator D:

D
(
Enc(u),Enc(v); θD

)
=

1

1 + exp (−eTu · ev)
, (5)

where θD is the parameters of D. Any required graph em-
bedding method, such as network embedding methods or
graph neural networks (GNNs) can be used as the encoder
Enc(·), making it flexible and easy to extend.

3 MODELING FOR DIFFERENT GRAPHS

In this section, we will introduce the implementation details
of our framework on different types of graphs. First, we
present the UG-AGE model for the undirected homoge-
neous graph, which represents basic and simple graph with-
out semantics information. For the graph with rich seman-
tics, we present DG-AGE and HIN-AGE for directed graphs
and heterogeneous information networks, respectively.

3.1 UG-AGE: AGE for Undirected Graphs
For undirected homogeneous graphs, we propose UG-
AGE based on our framework by a simple modification.
Generator of UG-AGE. According to Eqs. (1) and (2), we
define the generator, implicit distribution, and the generator
parameters of UG-AGE as follows:

G
(
u, θG

)
= f

(
η; θf

)
, η ∼ N

(
zTu , σ

2I
)
,

θG =
{
zu : u ∈ V, θf

}
.

(6)

The generator G outputs the embedding eu′ ∼ G(u, θG) of
the generated fake neighbor node u′. In this way, a negative
sample node pair (u, u′) is obtained. The generator G is
trained to deceive the discriminator with loss function LG:

LG = Eu∈V log (1− F (u, u′)) , (7)

where F (·) is the discriminant function in the discriminator.
The output is ranging from 0 to 1, and represents the
likelihood of the input node pair (u, u′) being positive.
Discriminator of UG-AGE. The discriminator part is di-
vided into two modules: one module is a graph structure
reservation module for learning graph structure and the
other is an adversarial training module to improve the
robustness and generalizability of the model.

• Graph Structure Preservation Module. The graph struc-
ture preservation module aims to preserve the original
graph structure in the low-dimensional embedding space.
Many graph embedding methods can be used directly as the
graph structure preservation module, such as DeepWalk [7],
LINE [9], node2vec [8], etc. Taking DeepWalk as an example,
for each node pair (u, v), the loss function LD

NE is:

LD
NE = logσ

(
eTu ·ev

)
+

K∑
k=1

En∼p(u)logσ
(
−eTu ·en

)
, (8)
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(a) UG-AGE. (b) DG-AGE. (c) HIN-AGE.

Fig. 3. Illustration of Algorithm 1 on UG-AGE, DG-AGE and HIN-AGE. We follow the paradigm of generator-discriminator framework based GAN,
which trains the discriminator first and then optimize the generator. (a) UG-AGE: for each node, the generator generates fake neighbors as negative
samples. (b) DG-AGE: for each node, the two generators share an implicit distribution and jointly generate a fake source neighbor and a fake target
neighbor as the negative samples. (c) HIN-AGE: for nodes with different relationships, the generator generates fake neighbor nodes by the implicit
distribution of corresponding relationships.

where σ(·) is the sigmoid function, K is the number of
negative samples, and p(u) is the sampling distribution of
negative samples (usually p(u) = d

3/4
v /

∑
v∈V d

3/4
v ). Note

that the node pair (u, v) comes from the random walk
sampling adopted by DeepWalk and can be modified ap-
propriately according to the specific method.

• Adversarial training module. The purpose of the adver-
sarial training module is to judge the authenticity of the
input node pair. For the input node pair (u, v), we use the
sigmoid function as the discriminant function D(u, v; θD)
and its output represents the likelihood of the node pair
being true. For node u, the generator G generates a fake
neighbor node u′ and obtains the node pair (u, u′). The
discriminant function as the loss function of the adversarial
training module can be obtained from Eq. (9):

LD
adv = Eu∈V − log (1−D (u, u′)) . (9)

Considering the graph structure retention module and the
adversarial training module, the loss function of D is

LD = LD
NE + λLD

adv, (10)

where λ > 0 is the weight of LD
adv.

Model Optimization. As shown in Fig. 3a, the model
training process is as follows. First, a node u ∈ V and its
neighbor node v ∈ V are selected by random walk to obtain
a node pair as a positive sample. For node u, the generator
generates a negative sample u′ and the negative node pair
(u, u′) is input into the discriminant function D(·). Second,
the loss function LG is calculated by the discriminant result
of D(·). Finally, we update the parameters of the generator
according to LG. We repeat the above steps to train the
generator and discriminator alternatively until convergence.

3.2 DG-AGE: AGE for Directed Graphs

For directed graphs, the key idea is to explicitly learn the
asymmetric semantics of the graphs. A critical problem
arises that nodes with low in-degree or low out-degree are
often difficult to learn due to the edges’ asymmetry. To
address this problem, we propose DG-AGE to learn more
robust source and target vectors for those nodes with low
in-degree or low out-degree, even for nodes with zero in-
degree or zero out-degree (such as u and v in Fig. 3c).

Asymmetry-Aware Generator. The generator G has three
main goals: (1) G should generate corresponding fake sam-
ples in a specific direction. Therefore, given a node u ∈ V ,
the generator G aims to generate a fake source neighbor us

and a fake target neighbor ut. us and ut should be as close as
possible to the real neighbor nodes. (2) G should generalize
well to non-existent nodes. In other words, the fake nodes
us and ut cannot be limited to the original graph. (3) For
those nodes with relatively low or zero in-degree or out-
degree, G should also be able to effectively generate fake
source neighbors and target neighbors.

In order to achieve the first goal, the generator G in DG-
AGE contains two generators: the source neighbor generator
Gs and the target neighbor generator Gt. For the second and
third goals, DG-AGE introduces an implicit variable (noised
embedding) η shared between Gs and Gt to generate neg-
ative samples. DG-AGE applies two transform functions fs

and f t to the generators to enhance the expression ability of
fake samples rather than directly generating samples from
the implicit distribution. The formula of generator G is

G
(
u; θG

)
=

{
Gs

(
u; θG

s
)
, Gt

(
u; θG

t
)}

, (11)

where θf
s

and θf
t

represent the parameters of fs and f t,
respectively. The noised embedding η serves as a bridge
between Gs and Gt. With the help of η, Gs and Gt update
collaboratively to generate better fake source neighbors and
target neighbors. According to Eq. (1), we derive η from the
implicit distribution η ∼ N(zTu , σ

2I), where zu ∈ Rd×1 is a
learnable variable, representing the implicit representation
of u ∈ V . The parameters of Gs and Gt are θG

s

= {zTu : u ∈
V, θfs}, θG

t

= {zTu : u ∈ V, θft}.
The two generators Gs and Gt aim to deceive the dis-

criminator D by generating fake samples close to real ones.
Therefore, the loss function LG of generators Gs and Gt is

LG = Eu∈v

(
log (1−D (us, u)) + log

(
1−D

(
u, ut

)))
,

(12)

where us and ut represent the fake source neighbors of
node u. The source vector sus and the target vector tut

of node u can obtained from sus ∼ Gs
(
u; θG

s)
, and

tut ∼ Gt
(
u; θG

t
)

. The parameters of Gs and Gt can be
optimized by minimizing LG.
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TABLE 1
Summary of the noise distribution and the score function of HIN-AGE.

Model Noise Distribution of Generator Score Function of Discriminator
TransE N(eG

u + eG
r , σ2I) ∥eD

u + eD
r − eD

v ∥
L1/L2

TransH N(eG
u,r + eG

r , σ2I) ∥eD
u,r + eD

r − eD
v,r∥L1/L2

TransD N(eG
u MG

r,u + eG
r , σ2I) ∥eD

u MD
r,u + eD

r − eD
v MD

r,v∥L1/L2

HGNN N(eG
u + eG

r , σ2I) sigmoid(HGNN(eD
u )MD

r HGNN(eD
v ))

Asymmetry-Aware Discriminator. The discriminator D
aims to distinguish the negative samples generated by the
generator G from the positive inputs sampled from the
original graph G. Note that for a given node pair (u, v), D
outputs the likelihood of the node v being connected to the
node u in the out-degree direction. In particular, the input
node pair can be divided into two cases:

• Positive Sample. There is indeed a directed edge from u
to v on G (i.e., (u, v) ∈ E). In this case, the node pair (u, v)
is considered to be positive and the loss function is:

LD
pos = E(u,v)∼pG − logD(u, v). (13)

• Negative sample. Given node u ∈ V , us and ut represent
its fake source neighbors and fake target neighbors, which
are generated by Gs and Gt, respectively. In this case,
node pairs such as (us, u) and (u, ut) are considered to be
negative and the loss function is:

LD
neg = Eu∈v − log (1−D (us, u))− log

(
1−D

(
u, ut

))
.
(14)

Note that the discriminator D treats the fake node rep-
resentations sus and tut as unlearnable inputs. Integrating
the above two cases together, the discriminator D can be
optimized by minimizing the loss function LD:

LD = LD
pos + LD

neg . (15)

Model Optimization of DG-AGE. In each training epoch,
DG-AGE uses mini-batch gradient descent to train the dis-
criminator D and the generator G alternatively. Specifically,
DG-AGE first fixes θG and generates corresponding fake
neighbors for each node pair of the graph to optimize
θD. Then, DG-AGE fixes θD and each node generates fake
neighbor nodes close to the real ones to optimize θG under
the guidance of D. The generator and discriminator conduct
adversarial training until DG-AGE converges.

3.3 HIN-AGE: AGE for Heterogeneous Information Net-
works

For heterogeneous information networks, an essential prob-
lem is how to explicitly model the various relationship
semantics of the graph. To preserve different relationship
semantics, given a node u ∈ V and a relation r ∈ R, we
need to generate a fake node u′ that may be connected to u
with a relationship r in the context.
Relationship-Aware Generator. The generator G(·; θG) has
two main goals. First, G can generate negative nodes close
to the real sample. Second, G must be relationship-aware
and the generated fake neighbor u′ should be as close to the
real node as possible under this relationship.

In order to meet the above requirements, we design HIN-
AGE model based on two commonly used heterogeneous

graph encoders: Translate models [22], [23], [24] and Het-
erogeneous Graph Neural Networks (HGNNs) [25].

• Translate Model Based Encoder. We consider designing
our encoder based on three commonly used models in the
knowledge graph: TransE [22], TransH [23] and TransD [24].
Specifically, we first obtain initial embeddings of nodes and
edges from a translate model as the encoder.

According to different translate models, the generator
uses the corresponding Gaussian distribution, as shown in
Table 1. Taking the TransE method as an example, the noise
distribution N(eGu +eGr , σ

2I) is a Gaussian distribution with
mean value eGu + eGr and covariance σ2I ∈ Rd×d.

• HGNNs Based Encoder. In recent years, HGNNs are
widely used in heterogeneous graphs due to strong power
and excellent performance. To further demonstrate the gen-
erality of our framework, we also present an HGNNs ver-
sion of HIN-AGE based on the Simple-HGN [25], a simple
and effective HGNNs method. Simple-HGN is an enhanced
version of GAT [28] for the heterogeneous graph, and con-
sists of three well-known techniques: learnable edge-type
embedding, residual connections, and L2 normalization on
the output embeddings. We calculate the relationship em-
bedding eGr with different semantics by learnable edge-type
embedding, and the nodes and edges representations:

α̂uv=
exp

(
LeakyReLU

(
aT

[
Whu ∥Whv∥Wre

G
r

]))∑
k∈Nu

exp (LeakyReLU (aT [Whu ∥Whk∥WreGr ]))
,

α(l)
uv = (1− β)α̂(l)

uv + βα(l−1)
uv ,

eGu = NormL2

σ

 ∑
k∈Nu

α
(l)
ukW

(l)eDk
(l−1)

+ eDu
(l−1)

 ,

(16)
where Wr is a learnable matrix to transform type embed-
dings, and β ∈ [0, 1] is a hyperparameter for scaling factor.

Intuitively, the mean value represents the representation
vector of fake nodes that may be connected to u through the
relationship r, and the covariance represents the potential
deviation. For generators, HIN-AGE uses a transform func-
tion f instead of direct sampling for higher quality negative
samples, and the generator can be formulated as follows:

G
(
u, r; θG

)
= f

(
η; θf

)
, (17)

where η ∼ N(eGu + eGr , σ
2I), θf is the parameters of f and

θG = {eGu : u ∈ V, eGr : r ∈ R, θf} is the parameters of G.
The HIN-AGE generator structure is shown in Fig. 2c. The
parameters θG can be optimized by minimizing LG:

LG = E(u,r)∼pG ,θu′∼G(u,r;θG) log (1−D (eu′ | u, r)) . (18)

Relationship-Aware Discriminator. For heterogeneous in-
formation networks, the discriminator aims to distinguish
between real and fake nodes under a given relationship.
Specifically, given a heterogeneous information network G
and a relation r, the discriminator D(ev | u, r; θD) outputs
the likelihood of sample v being connected to u under r. It
can be quantified as the score function as shown in Table 1.
Given a node u and a relation r, sample a node v. Each triple
(u, r, v) belongs to one of the following three cases:

• Real nodes connect under a real relation: (u, r, v). The
nodes u and v connect under the relation r in the heteroge-
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TABLE 2
Adversarial training complexity of UG-AGE, DG-AGE and HIN-AGE.

Model Time Complexity Space Complexity

UG-AGE O(ns · (nD + nG) · |V| · d2) O(d · |V| + |E|)
DG-AGE O(ns · (nD · |E| + nG · |V|) · d2) O(2 · d · |V| + |E|)
HIN-AGE O(ns · (nD + nG) · |E| · d2) O(d · |V| + (d + 1) · |E|)

neous information network G. Such triples can be modeled
by the following loss function:

LD
1 = E(u,v,r)∼pG − logD(eDv | u, r). (19)

In this case, the triple (u, r, v) ∼ pG is sampled from G and
the discriminator should judge them as positive.

• Real nodes connect under a fake relation: (u, r′, v). A node
pair u and v connect in the fake relationship r′ ̸= r. The
discriminator should judge them as negative because their
connection does not match the given relation r. The loss
function of this case is:

LD
2 = E(u,v)∼pg,r′∼pR′ − log(1−D(eDv | u, r′)). (20)

In this case, a pair of nodes (u, v) is sampled from G and the
fake relation r′ is generated by uniformly sampling from
R′ = R \ {r}.

• Fake nodes connect under a real relation: (u, r, v′). Given
a node u ∈ V and a relation r, the generator G(u, r; θG)
generates a fake neighbor v′ for u under the relation r. Sim-
ilarly, the discriminator should judge this triple as negative,
and the loss function is as follows:

LD
3 = E(u,r)∼pG ,ev′∼G(u,r;θG) − log (1−D (ev′ |u, r)) . (21)

Note that the embedding ev′ of fake neighbor v′ is sampled
from the distribution learned by the generator G. The dis-
criminator D just treats ev′ as an unlearnable input and only
optimizes its own parameters θD.

We consider the above three cases and integrate their
loss functions to train the discriminator. The parameters θD

of the discriminator can be optimized by minimizing LD :

LD = LD
1 + LD

2 + LD
3 . (22)

Model Optimization of HIN-AGE. We adopt an iterative
optimization strategy to train HIN-AGE. In each iteration,
the generator and the discriminator are alternately trained.
Specifically, we first fix θG and generate fake samples to
optimize θD for the discriminator training. Then, we fix θD

and optimize θG to generate better fake samples. Repeat the
above process for some iterations until the model converges.

3.4 Model Complexity Analysis
In this section, we analyze the time complexity and space
complexity of the adversarial training module in the pro-
posed three models (i.e., UG-AGE, DG-AGE, and HIN-
AGE). For the three models based on our framework,
G = (V, E) is the input graph, ns is the number of samples,
nG and nD are the numbers of training iterations of the gen-
erator and discriminator respectively, and d is the dimension
of the node embedding vectors. The detailed explanation
and analysis for our models are shown in Table 2.

Although the three models differ in time and space com-
plexity, the overall complexity of the adversarial training

module is linear to the number of nodes and edges. In
conclusion, our framework is both time and space efficient
and is scalable for large-scale graphs.

TABLE 3
Statistics of the datasets. (UG: homogeneous undirected graph;
DG: directed graph; HIN: heterogeneous information networks.)

Dataset #Nodes #Edges Avg. degree #Node classes #Graph type

Cora 2,708 5,278 3.90 7 UG/DG
Citeseer 3,264 4,551 2.79 6 UG

Facebook 6,637 249,967 37.66 3 UG
Ogbn-products 2,449,029 61,859,140 50.5 47 UG

CoCit 44,034 195,361 8.86 15 DG
Twitter 465,017 834,797 3.59 - DG

Epinions 75,879 508,837 13.41 - DG
Google 15,763 171,206 21.72 - DG
DBLP 37,791 170,794 9.04 4 HIN
Yelp 3,913 38,680 19.77 3 HIN

Aminer 312,776 599,951 3.84 6 HIN
Ogbn-mag 1,939,743 21,111,007 21.7 349 HIN

4 EXPERIMENT

In this section, we conduct extensive experiments on several
datasets to investigate the performance of UG-AGE, DG-
AGE and HIN-AGE, respectively.

4.1 Datasets and Experiment Setting
We evaluate the proposed framework on three types of
graphs including undirected and directed homogeneous
networks, heterogeneous information networks. The statis-
tics of these datasets are summarized in Table 3.
Undirected graph. Cora [29] and Citeseer [30] are citation
networks of academic papers, where nodes are papers,
edges are the citation relationships between papers, and
labels are the conferences in which papers are published.
Facebook [31] is a social network where nodes are users and
edges are the relationships between users.

Ogbn-products [32] is a large-scale product co-purchasing
network of Amazon where nodes are products and the
edges indicate that two products are purchased together.
Directed graph.

Unlike the above scenario of undirected graphs, for
citation networks Cora [29] and CoCit [2], we consider the
direction of the citation relationships between papers.

For social network Twitter [33], nodes represent users
and directed edges represent following relationships be-
tween users. For trust network Epinions [34], nodes repre-
sent users and directed edges represent trust between users.
For hyperlink network Google [35], nodes represent pages
and directed edges represent hyperlink between pages.
Heterogeneous information network. DBLP [36] and
Aminer [37] are scholar networks where nodes are papers,
authors and venues, edges are authorships and papers’
venues. Yelp [36] is a social network where nodes are users,
businesses, cities, and categories, and edges are user-user,
users’ reviews, business-city, and businesses’ categories.

Ogbn-mag [32] is a large-scale heterogeneous network
of the Microsoft Academic Graph containing four types of
nodes and four types of directed edges.

The parameter settings of all baselines follow the settings
in the original model. The number of walks, walk length
and window size are set to 10, 80 and 10 for comparison.
node2vec is optimized with grid search over its return
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TABLE 4
Summary of link prediction AUC scores (%), node classification Accuracy(%) and Macro-F1 scores (%) on undirected homogeneous graphs.

(Result: average score ± standard deviation; Bold: best; Underline: runner-up.)

Method

Cora Citeseer Facebook Ogbn-products

AUC Micro-F1 Macro-F1 AUC Micro-F1 Macro-F1 AUC Micro-F1 Macro-F1 Accuracy Micro-F1 Macro-F1

DeepWalk [7] 80.6±0.12 77.8±0.39 76.4±0.66 73.6±0.31 50.1±0.08 46.8±0.92 85.2±0.37 80.3±0.68 78.2±0.04 71.1±0.15 71.1±0.15 33.0±0.65
LINE-1 [9] 73.8±0.30 78.0±0.61 76.5±0.16 72.4±0.30 52.1±0.34 47.5±0.22 82.3±0.84 79.6±0.22 75.6±0.43 63.4±0.38 63.4±0.38 25.2±0.52

node2vec [8] 83.8±0.09 78.4±1.48 77.1±0.90 77.6±0.10 53.8±1.28 50.1±0.70 85.5±0.43 81.2±0.56 79.3±0.54 72.4±0.11 72.4±0.11 33.3±0.37

GraphGAN [16] 82.5±0.64 76.4±0.21 76.8±0.34 74.5±0.02 49.8±1.02 45.7±0.13 84.2±0.23 78.5±1.33 75.2±0.96 - - -
ANE [17] 83.1±0.57 78.5±0.51 77.0±1.40 75.0±1.20 50.2±0.12 49.5±0.61 85.6±1.35 82.1±0.14 79.6±0.38 72.5±0.30 72.5±0.30 34.3±0.29

GAE [38] 86.1±0.87 80.9±0.99 79.6±1.32 87.3±1.26 58.5±0.31 50.4±3.32 86.6±0.13 77.0±0.35 73.1±0.05 75.4±0.66 75.4±0.66 35.4±0.31
VGAE [38] 85.9±0.05 80.0±0.95 78.8±0.97 85.7±2.20 58.8±1.39 55.5±1.34 87.1±0.18 79.5±0.85 77.7±0.30 74.1±0.64 74.1±0.64 35.1±0.40
ARGA [39] 86.9±0.07 81.0±0.03 77.5±0.24 88.6±0.02 59.1±0.35 56.0±0.93 87.5±0.05 82.5±0.21 80.8±0.70 76.9±0.46 76.9±0.46 36.5±0.58

UG-AGE-DW 92.6±0.05 83.6±0.06 82.7±0.07 89.8±0.06 63.5±1.29 59.8±0.32 87.5±0.03 84.5±0.38 82.6±0.09 77.5±0.59 77.5±0.59 37.6±0.37
UG-AGE-NV 92.6±0.20 83.9±0.57 83.1±0.09 90.3±0.01 64.1±1.02 60.5±0.28 88.3±0.96 85.6±0.04 83.5±0.72 78.1±0.58 78.1±0.58 38.2±0.28

UG-AGE-GNN 90.2+0.42 85.6±0.34 84.7±0.20 88.3±0.53 64.2±0.40 61.6±0.23 86.2±0.18 84.9±0.35 82.2±0.24 78.8±0.33 78.8±0.33 38.8±0.37

and in-out parameters (p, q) ∈ {0.25, 0.50, 1, 2, 4} on each
dataset and task. For each proposed model, we choose
parameters by cross-validation and fix the numbers of gen-
erator and discriminator training iterations per epoch nG=5,
nD=15 across all datasets and tasks. For the samples of ex-
periments, we set the same number of positive and negative
samples sampled, and generate the same number of fake
samples for negative sample enhancement. Throughout our
experiments, the default setting of the dimension of node
embeddings is 128. The reported results are the average
performance of 10 times experiments.

4.2 Baselines and Evaluation Metrics
We compare the proposed UG-AGE, DG-AGE and HIN-
AGE with several unsupervised graph embedding methods.
Traditional graph embedding methods. We focus on sev-
eral classical methods based on random walk. DeepWalk [7]
and node2vec [8] learn node embeddings by using differ-
ent random walk algorithms, and LINE [9] learns large-
scale network embedding using first-order and second-
order proximities namely LINE-1 and LINE-2, respectively.
GAN-based graph embedding methods. Since our work is
based on the GAN framework, we focus on two important
GAN-based graph embedding methods. GraphGAN [16]
proposes a structure-aware graph softmax function to com-
pute each node’s probability and randomly samples the
nodes as the generated neighbor. ANE [17] trains a discrim-
inator to push the embedding distribution to a fixed prior.
Unsupervised Graph Neural Networks. For unsupervised
graph neural networks, we compare GNN methods based
on the autoencoder training framework. GAE [38] is the
popular graph autoencoder and VGAE [38] is the extending
variational version. ARGA [39] employs adversarial training
for graph autoencoders to regularize the latent codes and
enforce the latent codes to match a prior distribution. Note
that we adopt GNN method [40] as the encoder for all the
graph autoencoders.
Directed graph embedding methods. HOPE [6] preserves
the asymmetric information of the nodes by approximating
high-order proximity. APP [19] proposes a random walk
based method to encode Rooted PageRank proximity.
HIN embedding methods. We compare three types of
methods: Meta-path based methods (Metapath2vec [10] and
HIN2vec [36]), Translate model based methods (TransE [22],
TransD [23], TransH [24]) and Heterogeneous graph neural
network method (Simple-HGN [25]). Note that we mainly

focus on unsupervised learning setting, we use the translate
models and HGNN as the encoder for HIN-AGE.

For link prediction, the evaluation metric is the area
under curve (AUC) score of the ROC. For node classifica-
tion, the evaluation metrics are the Accuracy, Micro-F1 score
and Macro-F1 score. Since our framework and all baselines
are unsupervised learning model, we randomly sample a
fraction of the labeled nodes as the training data and train
a standard one-vs-rest L2-norm regularized logistic regres-
sion classifier. Then we predict the labels of the other nodes.
For graph reconstruction, the evaluation metric is Precision.

4.3 Performance Evaluation of UG-AGE
For evaluation, we compare it with several methods, includ-
ing traditional graph embedding methods and GAN-based
graph embedding methods. We also propose two versions
of UG-AGE implemented by using DeepWalk, node2vec
and GCN [40] for network structure retention, named UG-
AGE-DW, UG-AGE-NV and UG-AGE-GNN, respectively.

• Performance Analysis. We perform two tasks, link pre-
diction and node classification. For link prediction, we pre-
dict missing edges given a graph with a fraction of removed
edges. Specifically, we remove 20% of edges as positive
samples and randomly select node pairs with unconnected
edges as negative samples in the test set. Note that we
make sure that no node is isolated to avoid meaningless
embedding vectors when randomly removing edges. The
ratio of training to test data is 8:2. For node classification, we
evaluate the proposed UG-AGE and baseline methods on
four undirected homogeneous graph datasets Cora, Citseer,
Facebook and Ogbn-products. Note that we follow OGB [32]
default setting and only evaluate the node classification
task on the Ogbn-products. We use the top 8% nodes of
product sales ranking of Ogbn-products for training, next
2% nodes for test validation, and the rest for testing. Ogbn-
products is more challenging for evaluating the scalability
and generalization of the model.

We report the results of all models in Table 4. We can
notice that compared with DeepWalk and node2vec, UG-
AGE-DW and UG-AGE-NV with the adversarial training
module can achieve higher AUC scores and F1 scores,
which verifies the adversarial training module is consider-
ably beneficial to preserve the graph structure. UG-AGE-
DW and UG-AGE-NV both perform better than DeepWalk,
node2vec and LINE on the three datasets. The underlying
reason is that these baselines generate negative samples by
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Fig. 4. Performance and learning curves of UG-AGE on Cora for link
prediction and node classification.

randomly sampling from the original graph, which are not
strong enough and can be easily identified by the model,
while the negative samples of UG-AGE-DW and UG-AGE-
NV are generated by implicit node distributions. Compared
with GAN-based methods (GraphGAN, ANE) and graph
autoencoders (GAE, VGAE, ARGA), our UG-AGE-DW and
UG-AGE-NV also show better performance. It shows that
the implicit distributions of graphs provide better inductive
bias than the common prior distribution (e.g. Gaussian
distribution). Moreover, the results demonstrate that our
UG-AGE has good extensibility and scalability. For the
classification task on the large-scale dataset Ogbn-products,
UG-AGE-GNN shows better performance. The reason is
that the GNN-based encoder fully learns the features of
the node neighbors and also shows that our framework has
good scalability and generalization.

• Sparsity and Learning Analysis. To verify the ad-
vantages of our model, we analyze the link prediction and
node classification performance of UG-AGE under different
conditions on Cora. We randomly sample nodes of different
ratios (from 10% to 90%) as the training data and randomly
sample 10% nodes outside the training set as the test data.

Fig. 4.3 illustrates the performance and learning curves
of UG-AGE with different training ratios on Cora. Fig. 4a
shows that UG-AGE outperforms baselines under all train-
ing ratios, which indicates that the adversarial training mod-
ule can significantly improve the performance of the model.
We can observe that although the autoencoder (ARGA)
has better performance with a small ratio of training, UG-

AGE outperforms it rapidly. The reason is the GAN-based
method needs enough samples to fit the Gaussian dis-
tribution into the data distribution. In addition, we find
that the UG-AGE-GNN has lower speedups for different
training ratios, which may be due to the fact that node
representations are more dependent on the neighborhood
aggregation. Fig. 4b shows the test performances of UG-
AGE in the learning process. The results show that the per-
formance of UG-AGE improves rapidly with the increase of
the training ratio, indicating that it has better generalization
ability, especially in node classification.

4.4 Performance Evaluation of DG-AGE
For directed graph, we compare DG-AGE with traditional
graph embedding methods, directed graph embedding
methods, and GAN-based graph embedding methods. We
also construct two variants of DG-AGE to demonstrate the
effectiveness and flexibility of our framework. The DG-
AGE* uses only one generator Gt to generate target neigh-
borhoods of each node, and the DG-AGE-GNN uses GCN-
layer as the node encoder. Note that we do not report the
results of GraphGAN on Twitter and Epinions, since it cannot
run on these two large datasets.

• Link Prediction. Given a graph with a fraction of
removed edges, we predict missing edges. A fraction of
edges are removed randomly to serve as test split while
the remaining network are utilized for training. Specifically,
we remove 50% edges in Cora, Epinions and Google, and
40% edges in Twitter. Since we are interested in both the
existence and the direction of the edge, we reverse a fraction
of positive node pairs to replace the original negative sam-
ples if the edges are not bi-directional. The reversed ratio
γ ∈ (0, 1] means the fraction of positive edges from the test
data reversed as negative examples and 0 corresponds to
the classical undirected graph setting where all the negative
edges are sampled from random node pairs.

We summarize AUC scores of all methods in Table 5.
We can observe that the performances of all undirected
graph embedding methods (including GAN-based and
autoencoder-based methods) decrease rapidly with the in-
crease of reversed positive edges because they cannot model
the asymmetric proximity. The directed graph embedding
methods like HOPE and APP show poor performance on
Cora and Epinions. The reason is that these methods treat
the source role and target role of one node separately, re-
sulting in less robustness. Moreover, DG-AGE outperforms
DG-AGE* as it utilizes two generators mutually updat-
ing each other for more robust source and target vectors.
DG-AGE-GNN is the runner-up of comprehensive perfor-
mance, because the neighbors of the reversed edges affect
the node aggregation of the GCN encoder. Overall, DG-
AGE shows more robustness and outperforms all baselines
across datasets for link prediction.

• Node Classification. For node classification, we evalu-
ate DG-AGE on two directed graph datasets Cora and CoCit.
Note that for the methods using both source and target
embedding matrices, we set the dimension d of each em-
bedding to 64 and concatenate the two embedding vectors
into a 128-dim vector to represent each node.

Fig. 4.4 summarizes the experimental results with vari-
ous training ratios. Our DG-AGE consistently outperforms
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TABLE 5
Summary of link prediction AUC scores (%) on directed graphs with various fractions of reversed positive edges.

(Result: average score ± standard deviation; Bold: best; Underline: runner-up.)

Method
Cora Twitter Epinions Google

0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100%

DeepWalk [7] 84.9±1.39 68.1±0.43 52.9±0.12 50.4±0.67 50.3±0.21 50.3±0.01 76.6±1.21 67.9±0.54 66.6±0.12 83.6±2.61 72.1±0.65 66.5±0.32
LINE-1 [9] 84.7±0.63 68.0±0.25 52.5±0.06 53.1±0.45 51.5±0.13 50.0±0.01 78.8±0.52 69.8±0.26 68.5±0.05 89.7±0.82 72.7±0.45 65.1±0.21

node2vec [8] 85.3±1.07 65.5±0.35 52.1±0.09 50.6±0.75 50.5±0.33 50.3±0.01 89.7±0.31 74.6±0.12 72.6±0.02 84.3±1.13 70.5±0.53 64.3±0.26

GraphGAN [16] 51.6±0.67 51.3±0.31 51.2±0.12 - - - - - - 71.3±2.37 61.1±1.59 56.2±1.13
ANE [17] 72.8±0.53 61.4±0.28 51.5±0.07 49.7±0.53 49.8±0.29 50.0±0.02 85.5±2.15 69.2±0.74 66.9±0.24 76.1±1.86 63.7±0.83 57.8±0.53

GAE [38] 83.5±0.73 72.1±0.31 55.3±0.78 59.6±0.87 51.4±0.56 50.1±1.03 84.0±1.19 71.9±1.93 69.5±0.63 74.8±0.51 69.8±0.92 68.2±0.04
VGAE [38] 84.2±0.20 73.0±0.61 58.2±0.59 62.5±0.15 59.9±0.30 59.6±0.10 82.4±0.36 71.9±0.16 68.1±0.64 76.2±0.50 67.5±0.37 66.0±0.17
ARGA [39] 81.3±0.57 73.2±0.18 66.7±0.50 64.1±0.65 61.2±1.73 60.4±0.40 73.1±0.76 64.7±0.79 63.5±0.86 77.3±0.19 69.4±0.11 68.9±0.57

LINE-2 [9] 69.3±0.47 72.1±0.23 74.3±0.05 95.6±0.37 95.7±0.13 95.8±0.01 58.1±0.67 67.1±0.52 68.4±0.41 77.4±0.24 85.2±0.17 89.0±0.13
HOPE [6] 77.6±1.53 74.2±0.65 71.5±0.42 98.0±0.63 97.9±0.42 97.8±0.03 79.6±1.13 71.7±0.57 70.5±0.23 87.5±0.46 85.6±0.32 84.6±0.38
APP [19] 76.6±0.83 76.4±0.41 76.2±0.11 71.6±0.57 70.1±0.36 68.7±0.01 70.5±0.47 71.3±0.23 71.4±0.09 92.1±0.21 86.4±0.15 81.0±0.13

DG-AGE* 83.0±0.91 83.3±0.53 83.5±0.25 99.4±0.27 99.3±0.12 99.2±0.01 92.7±0.85 80.0±0.36 78.2±0.21 91.6±0.63 89.2±0.47 87.7±0.26
DG-AGE 85.1±0.63 86.7±0.31 88.3±0.11 99.7±0.15 99.7±0.09 99.7±0.01 96.1±0.51 86.4±0.25 85.1±0.11 92.3±0.52 93.4±0.36 94.4±0.23

DG-AGE-GNN 83.18±0.15 85.99±0.52 86.74±0.23 98.32±0.30 99.15±0.24 97.73±0.53 95.72±0.07 85.65±0.37 84.23±0.07 90.50±0.48 92.61±0.10 91.67±0.03

10 30 50 70 90
Training ratio (%)

50

55

60

65

70

75

M
ic

ro
-F

1 
sc

or
e 

(%
)

Cora

10 30 50 70 90
Training ratio (%)

30

35

40

45

50

55

60

65

M
ac

ro
-F

1 
sc

or
e 

(%
)

Cora

10 30 50 70 90
Training ratio (%)

25

30

35

40

45

M
ic

ro
-F

1 
sc

or
e 

(%
)

CoCit

10 30 50 70 90
Training ratio (%)

10

15

20

25

30

35

M
ac

ro
-F

1 
sc

or
e 

(%
)

CoCit

DeepWalk LINE-1 node2vec HOPE APP ARGA DG-AGE DG-AGE-GNN

Fig. 5. Node classification performance of DG-AGE on Cora and CoCit.
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Fig. 6. Graph reconstruction of DG-AGE on Google and Epinions.

all baseline methods across all training ratios on both
datasets, which demonstrates that DG-AGE can effectively
capture the neighborhood information in a robust man-
ner through adversarial learning. Moreover, although it is
difficult to generalize tasks with different semantics with
a particular proximity measure, adversarial training still
contributes to the generalization of learning. For example,
although ARGA is difficult to learn neighborhood informa-
tion with asymmetric semantics, adversarial training still
benefits performance improvement.

• Graph Reconstruction. Considering that the direc-
tion of edges may directly affect the topology structure of
directed graphs, we perform the graph reconstruction task
on Google and Epinions and randomly sample 10% nodes of
each dataset as the test data. Then we reconstruct the graph
edges based on the k-nearest target neighbors with a given
k ranked by reconstructed proximity.

We plot the average precisions corresponding to dif-
ferent values of k in Fig. 4.4. The results show that DG-
AGE mostly outperforms all baselines on both datasets. On
Epinions, HOPE outperforms DG-AGE when k=5 and k=10.
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Fig. 7. Link prediction and learning curves of DG-AGE on Google.

It may be because HOPE uses high-order proximity as the
weights of directed edges to reconstruct more edges. On
Google, DG-AGE shows an improvement of around 33%
with k=1 over the second best method HOPE. Some meth-
ods (e.g., node2vec, ARGA) that focus on undirected graphs
exhibit good performance in link prediction but show poor
performance in graph reconstruction. This is because graph
reconstruction is harder than link prediction and the model
needs to distinguish a small number of positive edges from
a large number of negative edges. In particular, the precision
of ARGA decreases rapidly on Google with k increases. It
further proves the benefit of adaptation to semantic rules.

• Sparsity and Learning Analysis. For the directed
graph, we analyze the performance of models under differ-
ent graph sparsity levels and the converging performance
of DG-AGE on a denser dataset Google.

We first investigate how the graph sparsity affects the
three directed graph embedding methods HOPE, APP and
DG-AGE. These training settings are the same as them in
the link prediction task and 50% positive edges of test set
are reversed to form negative edges. We randomly delete
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TABLE 6
Summary of link prediction AUC scores (%), node classification Accuracy and Macro-F1 scores (%) on heterogeneous information networks.

(Result: average score ± standard deviation; Bold: best; Underline: runner-up.)

Method

DBLP Yelp AMiner Ogbn-mag

AUC Micro-F1 Macro-F1 AUC Micro-F1 Macro-F1 AUC Micro-F1 Macro-F1 Accuracy Micro-F1 Macro-F1

DeepWalk [7] 56.3±0.72 92.0±0.71 92.4±0.59 78.3±0.22 82.6±0.81 75.5±0.67 51.8±0.81 95.2±0.30 94.6±0.17 24.3±0.24 24.3±0.24 11.9±0.16
LINE-1 [9] 72.2±0.30 92.4±0.04 92.1±0.85 79.7±0.95 82.3±0.38 74.4±0.15 64.1±0.58 97.8±0.25 97.1±0.04 26.2±0.53 26.2±0.53 12.8±0.16
LINE-2 [9] 65.0±0.38 91.4±0.20 91.7±0.80 67.5±1.12 75.9±0.57 55.2±0.68 51.1±0.11 94.7±0.19 93.4±0.59 25.8±0.32 25.8±0.32 12.1±0.64

GraphGAN [16] 53.3±0.62 92.0±0.39 92.1±0.11 76.3±0.57 81.0±0.16 72.7±0.70 - - - - - -
ANE [17] 54.3±0.47 91.4±0.17 91.5±0.47 73.3±0.39 82.3±0.41 76.2±0.92 52.8±0.16 92.6±0.23 92.0±0.13 28.2±0.89 28.2±0.89 15.5±0.71

GAE-HGN [25], [38] 70.8±0.21 92.9±0.08 91.4±0.37 75.5±0.36 81.2±0.14 77.2±0.11 71.6±0.27 94.2±0.05 93.3±0.92 35.2±0.11 35.2±0.11 18.7±0.24
VGAE-HGN [25], [38] 71.4±0.12 92.1±0.33 91.1±0.44 78.6±0.48 83.0±0.09 78.5±0.08 75.8±0.73 94.9±0.05 93.7±0.31 35.8±0.27 35.8±0.27 18.7±0.39
ARGA-HGN [25], [39] 70.5±0.61 92.8±0.26 91.4±0.47 77.4±0.46 82.1±0.40 77.7±0.53 76.2±0.43 95.6±0.28 94.3±0.12 36.5±0.35 36.5±0.35 19.6±0.13

HIN2vec [36] 79.5±0.39 91.4±0.40 91.2±0.48 79.6±0.58 83.5±0.14 76.1±0.50 78.7±0.13 98.0±0.12 97.8±0.05 34.1±0.14 34.1±0.14 18.8±0.21
Metapath2vec [10] 59.2±0.21 92.9±0.34 93.0±0.41 78.0±0.12 79.5±0.86 78.8±0.73 76.2±0.70 98.5±0.28 98.6±0.09 34.4±0.28 34.4±0.28 19.2±0.34

TransE [22] 76.3±0.07 90.2±0.32 91.2±1.05 77.3±0.57 82.5±0.03 75.4±0.76 75.6±0.21 97.1±0.66 96.4±0.35 31.3±0.73 31.3±0.73 16.3±0.48

HIN-AGE-TE 79.1±0.45 91.3±0.28 92.5±0.13 79.9±0.03 84.2±0.35 79.5±0.30 78.7±0.74 97.7±0.13 97.7±0.10 36.8±0.57 36.8±0.57 19.4±0.43
HIN-AGE-TH 81.3±0.55 94.2±0.58 93.9±0.21 81.3±0.09 86.1±0.17 81.2±0.52 81.5±0.13 98.5±0.08 98.8±0.07 37.0±0.35 37.0±0.35 19.2±0.71
HIN-AGE-TD 83.2±0.28 95.2±0.08 94.1±0.16 82.1±0.15 86.6±0.18 82.1±0.84 83.1±0.84 98.7±0.25 98.9±0.01 37.9±0.24 37.9±0.24 21.0±0.15

HIN-AGE-HGN 76.9±0.65 93.1±0.25 91.9±0.45 77.8±0.27 82.4±0.29 77.5±0.36 78.4±0.40 98.9±0.26 98.3±0.31 39.2±0.61 39.2±0.61 22.9±0.49

different ratios of edges from the original graph to construct
graphs with different sparsity levels. Fig. 7a shows the
results with respect to the training ratio of edges on Google.
We can see that DG-AGE consistently and significantly
outperforms HOPE and APP across different training ratios.
Moreover, DG-AGE still achieves much better performance
when the network is very sparse. It demonstrates that the
proposed DG-AGE, which is designed to jointly learn a
node’s source vector and target vector, can significantly
improve the representation robustness.

Next, we investigate the effects of the training itera-
tions of the discriminator D. Fig. 7b shows the converging
performance of DG-AGE on Google with different ratios
of reversed positive edges of test set (the results on other
datasets show similar trends and are not included here).
With the increase of iterations of D, the performance of
DG-AGE with γ=0 (i.e., random negative edges in test set)
keeps stable first and then slightly increases. Besides, the
training curve of DG-AGE with γ=1.0 (i.e., all positive edges
except bi-directional edges are reversed to create negative
edges in the test set) changes every 15 iterations (i.e., one
epoch). The training curve of DG-AGE with γ=1.0 rises
gently during second epoch (i.e., from the 16-th iteration
to the 30-th iteration) for the generator G which is still been
poorly trained at the moment. The trend rises steeply in the
following epochs where G is being able to generate close-to-
real fake samples.

4.5 Performance Evaluation of HIN-AGE
In order to evaluate the performance of HIN-AGE, we com-
pare it with several methods, including traditional graph
embedding methods, GAN-based graph embedding meth-
ods, HIN embedding methods and unsupervised HGNNs.
Note that we present three versions (HIN-AGE-TE, HIN-
AGE-TH and HIN-AGE-TD) based on translate model and
a version (HIN-AGE-HGN) based on HGNN model. For
HGNNs, we mainly consider Simple-HGN [25] as the back-
bone, which is a simple and stat-of-the-art method based on
GAT [28]. Note that we use the autoencoders (GAE-HGN,
VGAE-HGN, ARGA-HGN) with Simple-HGN as the back-
bone and the unsupervised HGNN baselines. The results of
GraphGAN on AMiner and Ogbn-mag are excluded, because
they cannot perform on the large dataset.
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Fig. 8. Performance with different graph sparsity and learning curves of
HIN-AGE on Yelp.

• Performance Analysis. For link prediction, we predict
user-review links in Yelp and author-paper links in DBLP
and AMiner. For positive samples, we randomly keep 20%
connected node pairs in Yelp, DBLP and AMiner as test
set and the remaining 80% as training set. For node clas-
sification, we evaluate the proposed HIN-AGE and other
baseline methods on DBLP, Yelp and AMiner. Similar to link
prediction, we sample 80% labeled nodes as the training
data and predict the labels of the other 20% labeled nodes.
In addition, as same as the setting of Section 4.3, we also
evaluate the scalability and generalization of HIN-AGE on
a large-scale heterogeneous information network Ogbn-mag
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Fig. 9. The average run-time per epoch of link prediction on Cora (undirected and directed graph) and Yelp (heterogeneous information network).

of the OGB [32]. Note that we add node feature information
to the learning of all unsupervised HGNNs methods (GAE-
HGN, VGAE-HGN, ARGA-HGN and HIN-AGE-HGN).

As shown in Table 6, HIN-AGE outperforms all base-
lines. We can observe that the semantic heterogeneity se-
riously reduces the performance of homogeneous graph
neural networks, including traditional, GAN-based, and
autoencoder-based graph learning methods. It indicates
HIN-AGE can better preserve the heterogeneous semantics.
In addition, we observe that HIN-AGE-TD can achieve the
best performance compared with other variants of HIN-
AGE on DBLP, Yelp and AMiner. It may be because that HIN-
AGE-TD uses one vector to represent semantics and an-
other to construct a mapping matrix, which can better pre-
serve the semantic information of multi-classes nodes and
multi-relations in heterogeneous networks. For unsuper-
vised HGNNs, we compare our HIN-AGE-HGN with the
autoencoder-based HGNNs methods (GAE-HGN, VGAE-
HGN, ARGA-HGN). We find that HIN-AGE-HGN has bet-
ter performance than the autoencoder-based methods on
the large-scale dataset, especially on Ogbn-mag. The reason
is that node representations may depend on the quality
of heterogeneous neighbor feature aggregation, which is
especially important in large-scale heterogeneous graphs.

• Sparsity and Learning Analysis. We further evalu-
ate the generalizability of HIN-AGE with different graph
sparse conditions on Yelp. We randomly sample 10% to
90% from the original training set as the training data and
randomly sample 10% of the remaining nodes as the test
data. Fig. 8a shows the results with different training ratios
of link prediction and node classification tasks on Yelp. It
can be observed that HIN-AGE consistently outperforms
all baselines for both tasks, even when the training ratio is
small. In addition, we can observe that the learning curves
of the four variants of HIN-AGE are similar, indicating that
the framework is stable in the training process. Compared
to other structure-aware adversarial training frameworks
(GraphGAN), our framework is stable in the learning pro-
cess regardless of the any encoders.

4.6 Model Efficiency Analysis.
We conduct experiments with our three models and all
baselines for model efficiency analysis. Figure 4.5 illustrates
the training time of UG-AGE, DG-AGE, HIN-AGE and base-
lines on Cora and Yelp for link prediction. It can be observed
that our three models have the best computational efficiency
in the GAN-based method (ANE, GraphGAN). In general,
our framework can significantly improve the computational
efficiency and scalability of network embedding models,
which supports our complexity analysis in Section 3.4.

5 RELATED WORK

In this section, we first briefly review the graph representa-
tion learning methods. Then we review the graph embed-
ding based on generative adversarial network specifically.

5.1 Graph Representation Learning

Graph representation learning methods fall into three cat-
egories: matrix factorization based models, random walk
based models and deep learning based models. The ma-
trix factorization based models (e.g., GraRep [4] and M-
NMF [5]) first preprocess the adjacency matrix which pre-
serves the graph structure, and then decompose the prepro-
cessed matrix to obtain graph representations. The random
walk based models (e.g., DeepWalk [7], LINE [9], PTE [41]
and node2vec [8]) sample node sequences to put into Skip-
gram model [42] by random walk on the graph and can be
unified into the matrix factorization framework with closed
forms [43]. In addition, Graph Neural Networks [14], [28],
[40] have been widely studied and applied because of their
powerful representation capability. However, most of them
ignore data noise. The negative samples used are not strong
enough, leading to poor robustness.

Some works focus on directed graphs [6], [19], [44], [45],
which learn source and target embedding for each node.
HOPE [6] derives node-similarity matrix by approximating
high-order proximity measures and then decomposes the
node-similarity matrix to obtain node embeddings. APP [19]
preserves the asymmetric proximity via random walk with
restart, which implicitly preserves the Rooted PageRank
score for node pairs. NERD [46] generates role-specific
node neighbors with a plain alternating random walk
strategy and learns node representations in their related
source/target nodes. ATP [47] incorporates graph hierarchy
and reachability to construct the asymmetric matrix. For
directed graph, most methods fail to capture the highly non-
linear property in graphs.

The graph representation learning models for homoge-
neous graphs are not suitable for heterogeneous informa-
tion network (HIN) [48]. Recent research in HIN embed-
ding can be divided into three categories: random walk
based models, knowledge graph embedding models, and
heterogeneous graph neural networks. The random walk
based methods model structural and semantic correlations
in HIN simultaneously, such as metapath2vec [10] and
HIN2vec [36]. These methods design meta-path based or
specific random walk strategies to obtain the neighborhood
of nodes. HERec [49] designs a meta-path based random
walk strategy and further integrates node embeddings
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into an extended matrix factorization model. The knowl-
edge graph representation learning methods learn low-
dimensional embeddings of entities and relations while cap-
ture relative semantic meanings [50]. Heterogeneous Graph
Neural Network [51], [52], [53] is a powerful graph represen-
tation learning method which focuses on aggregating multi-
relational information on HINs. However, these methods
always need domain knowledge to design meta-paths or
walk strategies, which is difficult to apply to complex and
large-scale HINs.

5.2 GAN-based Graph Embedding
Recently, Generative Adversarial Network (GAN) [54] at-
tracts increasing attention among researchers due to its
impressing performance on the unsupervised tasks. GAN
can be considered as playing a game-theoretical min-max
game between the generator and the discriminator. Sev-
eral methods [16], [17], [18], [39], [55], [56], [57], [58]
have been proposed to apply GAN for graph embedding
to achieve the robustness and generalization of models.
GraphGAN [16] samples negative nodes in the sampling
distribution. ANE [17] regularizes graph embedding learn-
ing, which contains a structure preserving component and
an adversarial learning component for obtaining struc-
tural properties and robust representations, respectively.
NetRA [18] and ARGA [39] adopt adversarially regularized
auto-encoders to learn smooth embeddings. ProGAN [55]
employs triplets of nodes for discovering the complicated
latent proximity. DANE [57] employs GCN [40] to get trans-
ferable node embeddings on different networks. However,
the above methods generate the samples from the original
graph, and it cannot learn the unseen information of the
graph and is difficult to extend to the large-scale network.

6 CONCLUSIONS AND FUTURE WORKS
In this paper, we propose a novel robust and generalized
framework called AGE for adversarial graph embedding.
Specifically, we design the generator(s) and the discrimi-
nator(s) that can preserve complex semantic information
of the graph by using the continuous implicit distribution
of nodes and the semantic information of the graph. The
computational complexity of the proposed framework is
linearly related to the number of edges in the graph, and
can be generalized well to various graphs. We design three
models for three typical graphs by simple modifications,
demonstrating the flexibility and generalization of the pro-
posed framework. The extensive experimental results on
the real-world graph datasets demonstrate that our models
consistently and significantly outperform the state-of-the-
art methods in the link prediction, node classification, and
graph reconstruction tasks.

In the future, we plan to explore the proposed methods
for graphs with more types of semantics (e.g., attribute
graphs). Another interesting direction is to fuse our frame-
work with other graph embedding methods deeply for
better graph representation capability.
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